Complex-valued Neurons Can Learn More but Slower than Real-valued Neurons via Gradient Descent

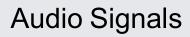
Jin-Hui Wu, Shao-Qun Zhang, Yuan Jiang, and Zhi-Hua Zhou { wujh, zhangsq, jiangy, zhouzh }@lamda.nju.edu.cn

Motivation

- Complex-valued neural networks (CVNNs) can outperform real-valued neural networks (RVNNs) in some signal processing tasks.
- But CVNNs cannot always outperform RVNNs.



Radar Signals



- **D** Two important questions:
 - \succ When CVNNs outperform RVNNs via gradient descent (GD)?
 - > Can we learn everything with CVNNs without paying additional price?
- **D** We answer from the aspect of neuron learning, i.e., learning a single neuron using another neuron.
 - \succ It is a special case of neural network learning.
 - > Its analysis is tractable.
 - \succ It is sufficient to tell us the difference between RVNNs and CVNNs.

Formulation

□ In this paper, neuron learning minimizes the expected square loss via GD

$$L(\boldsymbol{w}, \boldsymbol{\psi}_{w}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[\left(\sigma_{\boldsymbol{\psi}_{w}}(\boldsymbol{w}^{\mathsf{T}} \overline{\boldsymbol{x}}) - \sigma_{\boldsymbol{\psi}_{v}}(\boldsymbol{v}^{\mathsf{T}} \overline{\boldsymbol{x}}) \right)^{2} \right].$$

□ Here:

- $\succ \mathcal{D} = \mathcal{N}(\mathbf{0}, \mathbf{I})$ is the distribution of input $\mathbf{x} \in \mathbb{C}^d$.
- \succ (ψ_v, v) is the fixed target neuron.
- \succ (ψ_w , w) is the learnable neuron with random initialization.
- $\succ \sigma_{\psi}$ is the symmetric zReLU activation function

$$\sigma_{\psi}(z) = \begin{cases} \operatorname{Re}(z), & \theta_z \in [-\psi, \psi], \\ 0, & \text{otherwise.} \end{cases}$$

- For a complex-valued neuron (CVN), both ψ_w and w are learnable.
- For a real-valued neuron (RVN), ψ_w is fixed as $\frac{\pi}{2}$, only w is learnable, and σ_{ψ} degenerates to the ReLU activation function.

Learning And Mining from DatA

NEURAL INFORMATION

PROCESSING SYSTEMS

CVNs Can Learn More than RVNs

Two positive learning results for CVNs.

Theorem 1 (informal). Let d = 1, and L_{cr} is the expected loss of learning an RVN using a CVN via GD. Under random initialization, if the step size of GD satisfies $\eta_t = \eta \in (0, 1/(12\pi))$, then we have

 $\Pr[L_{\rm cr} = O(t^{-3})] > 0.$

A CVN learns an RVN at rate $O(t^{-3})$

Theorem 2 (informal). Let d = 1, and L_{cc} is the expected loss of learning a CVN using a CVN via GD. Under random initialization, if the step size of GD satisfies $\eta_t = \min\{c_1, c_2/t\}$ with $c_1 \le 1/3000$ and $c_2 \ge 20$, then we have $\Pr[L_{\rm cc} = O(t^{-1})] > 0.$

A CVN learns a CVN at rate $O(t^{-1})$

One negative learning results for RVNs.

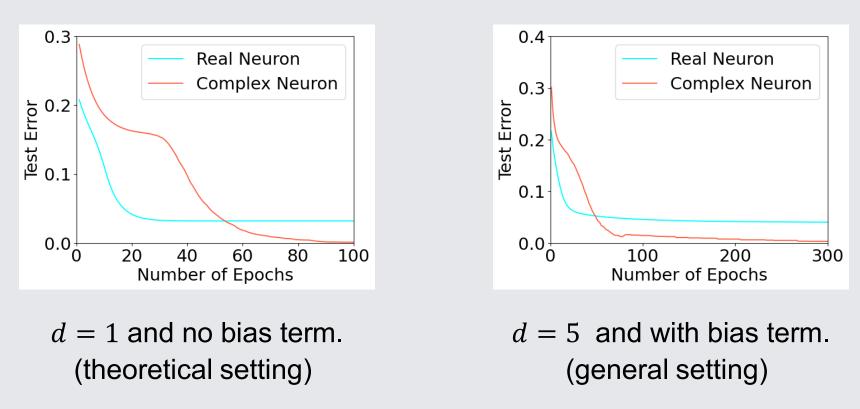
- **\square** The phase ψ of an RVN is fixed as $\pi/2$.
- An RVN has less learnable parameters than a CVN.
- □ The negative result considers learning a CVN using a two-layer RVNN for fairness.

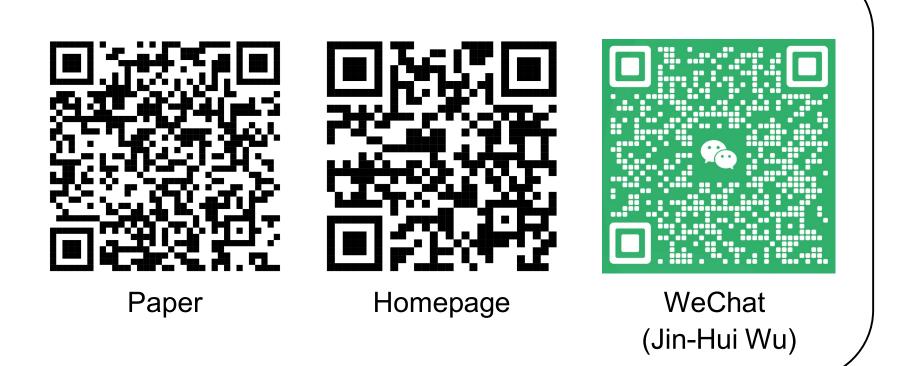
Theorem 4 (informal). Let d = 1, and L_{rc} is the expected loss of learning a CVN using a two-layer RVNN with n hidden neurons. If the CVN is nondegenerate, i.e., $\psi_v \notin \{0, \pi/2\}$ and $v \neq 0$, then we have

$$L_{\rm rc} \ge \frac{\|\boldsymbol{v}\|^2 \min\{2\psi, \pi - 2\psi\}^3}{24\pi(n+2)^2} > 0.$$

RVNNs with fixed width cannot learn a non-degenerate CVN.

Simulation experiments.





CVNs Learn Slower than RVNs

Lemma 5 [Yehudai and Shamir, 2020] (informal). Let L_{rr} be the expected loss of learning an RVN using an RVN via GD. Under random initialization and suitable step size, we have

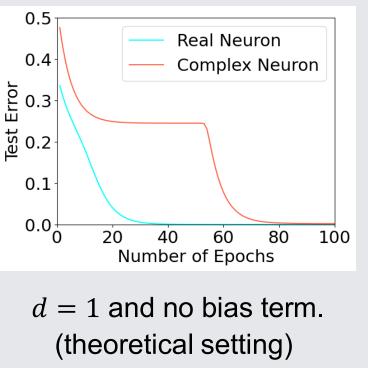
 $\Pr[L_{rr} = O(e^{-ct})] > 0.$

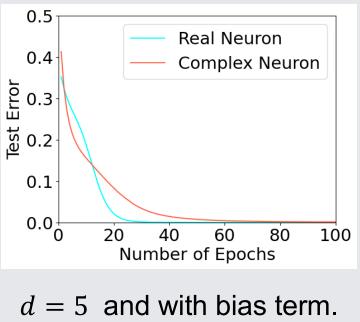
An RVN learns an RVN with exponentially small loss.

Theorem 6 (informal). Let d = 1, and L_{cr} is the expected loss of learning an RVN using a CVN via GD. If the initialization is around the global minimum, and the step size of GD satisfies $\eta_t = \eta \in (0, 1/(12\pi))$, then we have $L_{\rm cr} = \Omega(t^{-3})$

A CVN learns an RVN with polynomially large loss.

Simulation experiments.





(general setting)

Summary

- CVNs can learn more than RVNs
- > A CVN learns an RVN at rate $O(t^{-3})$.
- > A CVN learns a CVN at rate $O(t^{-1})$.
- > RVNNs with fixed width cannot learn a non-degenerate CVN.
- CVNs learn slower than RVNs.
 - > An RVN learns an RVN at rate $O(e^{-ct})$.
 - > A CVN learns an RVN at rate $\Omega(t^{-3})$.

Target	RVN	CVN
RVN	$O(e^{-ct})$	$\Theta(t^{-3})$
CVN	Cannot Learn	$O(t^{-1})$